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1. Introduction 

Urban rail transit is an important, safe, efficient, and environmentally friendly mode of passenger 
transport. Signal lights, as an important part of the rail transit system, can convey specific 
instructions to drivers to ensure the safe operations of trains. However, damage or failure of the 
signal often results in unpredictable delays and even safety issues (note that due to the “fail-safe” 
design of rail signals, a failure will typically lead to the “stop” indication, resulting in service 
delays). For example, in New York City, “the percent of morning rush hours scrambled by subway 
signal problems declined from 92% in 2018 to 78% in 2019 but is back up to 80% for the first half 
of 2021 and a very troubling 88% for the second quarter, April through June 2021”, according to 
Riders Alliance (Riders Alliance, 2022). Since many signals were installed in the early 20th 
century, aging equipment was recognized as one of the major causes of the transit crisis in New 
York City in 2017 (Fitzsimmons, 2017). To give another example, in the Bay Area Rapid Transit 
(BART) system, in-service signal failures account for 50% of infrastructure-related delays that 
result in slowed service for about 400 hours per year (Wiedmann, 2021). In addition, the 
simultaneous malfunctioning of multiple devices will lead to heavy maintenance tasks and 
significant economic losses due to transit shutdowns. By predicting rail transit signals that are 
prone to failure, one can move toward predictive asset management, achieving a balance between 
safety, efficiency, and economy. 
 
The widely used machine learning algorithm XGBoost (eXtreme Gradient Boosting) is a scalable 
implementation of the tree boosting algorithm. It is a state-of-art machine learning method which 
has good applications in many areas. Take Kaggle competition as an example: XGBoost is the 
machine learning method that appears most frequently in the winning solutions (Chen & Guestrin, 
2016). In this report, we develop an XGBoost-based model to predict rail transit signal failures for 
the following month (prediction of failure one month in advance).  
 
Rail transit companies have recorded large amounts of event-based data, such as maintenance logs 
of signal equipment. Event-based data consists of a set of events and a set of participating entities. 
Event-based datasets are very common, including email traffic, telephone calls, and research 
publications (O’Madadhain et al., 2005).  
 
Because it is impractical to install sensory devices on every single piece of signal equipment to 
collect real-time equipment condition data, there is a practical value to the recorded event data 
being able to predict signal failure by location. For this type of prediction, one particular challenge 
is dealing with the rarity of failure events. There were only a small portion of signals reported to 
have failures in the study period, while most other signals operated normally. In the context of 
classification in the machine learning field, this poses difficulties since many machine learning 
algorithms used in classification prediction models are designed based on the assumption that the 



 

7 
 
 

class distribution is equal or slightly imbalanced (Fernández et al., 2018). For rare event prediction, 
imbalanced data mining (IDM) techniques can be used (Chawla et al., 2002). For IDM, resampling 
is a widely used statistical technique, in which the class distribution of the training data is changed 
by either increasing the minority data sample or removing the majority data sample. A number of 
resampling techniques were proposed and validated in previous studies (Chawla et al., 2002; He 
et al., 2008; Menardi & Torelli, 2014). However, no resampling method can guarantee superior 
performance over others (Provost, 2000). Therefore, we conduct a comparative experiment for 
various resampling methods, including random oversampling, Synthetic Minority Oversampling 
Technique (SMOTE), ADAptive SYNthetic sampling approach (ADASYN), and random 
undersampling.  
 
The remainder of this report is organized as follows. Firstly, Chapter 2 discusses related works and 
identifies knowledge gaps in the existing literature. Chapter 3 introduces the dataset utilized in our 
experiments. Then, the proposed approach for failure prediction of rail transit signals is presented 
in the Chapter 4. In Chapter 5, we test the effectiveness of various approaches in addressing 
imbalanced data and discuss the model performance in comparison with the empirical data. Finally, 
our conclusions as well as future work are elaborated in the last chapter. 
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2. Literature Review and Knowledge Gaps 

2.1. Literature Review  
The literature includes many prior studies which have been conducted on rail transit signal systems. 
Tu et al. proposed a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 
method for evaluating safety degrees of transit signal systems according to engineering practices 
and a questionnaire survey (Tu et al., 2011). Zhang et al. presented a new risk assessment method 
called Fuzzy-FMECA (Failure Mode, Effects and Criticality Analysis) for railway signal systems 
(Zhang et al., 2013). Ren et al. studied the application of cloud computing technology in rail transit 
signal systems using the Monte Carlo method for safety and reliability analysis (Ren et al., 2020). 
The above studies focus on the design of the signal system rather than the safe operation of each 
signal. 
 
XGBoost was originally developed from the Classification And Regression Trees (CART) 
algorithm (Breiman et al., 1984). Then, in 1996, Freund and Schapire proposed AdaBoost which 
combines many relative weak trees to create a highly accurate classifier (Freund & Schapire, 1996). 
Friedman et al., in 2000, interpreted the boosting as an additive logistic regression model (i.e., 
AdaBoost) which aims to minimize exponential error (J. Friedman et al., 2000), and soon proposed 
a gradient boosting machine to address the general supervised problem by combining boosting and 
CART (J. H. Friedman, 2001). Recently, Chen et al. proposed a scalable and efficient 
implementation of the gradient boosting machine, which has been widely accepted and used to 
address many machine learning challenges (Chen & Guestrin, 2016). 
 
The issue of data imbalance has also been studied in much of the literature. Krawczyk discussed 
major challenges for developing a method to treat imbalanced data (Krawczyk, 2016). He 
mentioned that imbalanced data can be tackled from the data level and the algorithm level. On the 
data level, many resampling methods have been proposed to modify the distribution of data 
samples and have been validated as effective in the field of classification problem. Ling and Li 
proposed the random oversampling method to duplicate the existing minority samples (Ling & Li, 
1998). SMOTE, proposed by Chawla et al. and ADASYN, proposed by He et al. both create new 
samples for minority class instead of duplicating the existing ones (Chawla et al., 2002; He et al., 
2008). There is also significant literature on the effects of random undersampling (Hasanin & 
Khoshgoftaar, 2018; Prusa et al., 2015). On the algorithm level, one prevalent approach is to use 
appropriate evaluation metrics. Swets proposed a new measure of model performance that can 
better reflect the degree of accuracy for binary classification for imbalanced data (Swets, 1988). 

2.2 Knowledge Gaps 
Although many previous studies have developed various approaches for analyzing safety degrees 
of rail transit signal systems, very few have studied the failure prognosis for each single signal 
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unit. In addition, few studies have used event-based data for rail transit signal data analysis. It is 
also challenging to develop a machine learning based model for imbalanced data in such a rare 
event data analysis. Since a resampling method that is well-validated on one dataset may not have 
the same effect on others, it is also intriguing to apply various resampling methods comparatively 
to the signal failure event dataset. This knowledge gap has motivated the development of this 
research, which aims to develop a machine learning based approach to predict the failure of each 
signal, using event data from maintenance records. 
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3. Data 

The signal equipment registry and the trouble call history from a major rail transit agency in the 
United States and the weather condition data from NOAA’s National Centers for Environmental 
Information are utilized to confirm the validity of our proposed failure prognosis method. The 
signal equipment registry dataset contains primary information pertaining to the signals when they 
were registered (e.g., Class, Division, Subdivision, Line). The trouble calls dataset records the 
signals’ failure histories and corresponding maintenance work (e.g., Date Reported, Problem Code, 
Cause Code, Action Code) from May 2018 to June 2021. The weather data includes average 
temperature and total precipitation for each month from May 2019 to June 2021. Table 3.1 displays 
a detailed list of variables gathered from the three datasets as well as their descriptions. To reduce 
the model complexity while keeping the effectiveness of the predictive model, multiple records 
from the signal equipment registry and the trouble call history datasets, where various pieces of 
signal equipment work jointly at the same location, are combined into one observation. For 
example, a failure that occurred on the insulted joint of a signal on May 1, 2021 and a failure that 
occurred on the signal head of the same signal on May 15, 2021 will be counted as 2 failures of 
the signal in May 2021. A total number of 18,623 observations are collected and used in our 
experiments.  
 

Table 3.1. Variables Retrieved from the Datasets 
Variables Descriptions 
Division Historic Operating Company (Division) where the work is 

to be performed 
Subdivision Subdivision where the signal is located 
Line Line where the signal is located 
Date Reported Date and time that the Transit employee reported the trouble 
Type Type of work being performed (e.g., Corrective, Preventive, 

Capital) 
Problem Code The reported issue – the symptom observed 
Failure Code Which equipment failed and its malfunction 
Cause Code What caused the signal failure 
Action Code Step taken to resolve the failure 
Temperature Monthly average temperature in degrees Fahrenheit 
Precipitation Monthly total precipitation in millimeters 
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4. Methodologies 

We define an event-based dataset containing a set of events (i.e., failures and corresponding 
maintenance actions) 𝐸𝐸 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑚𝑚} and a set of entities (i.e., signal units) 𝑉𝑉 =
{𝑣𝑣1,𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑛𝑛}. Every event has a timestamp 𝑡𝑡𝑖𝑖. For example, the trouble calls dataset 
mentioned in the above section records a specific date 𝑡𝑡𝑖𝑖 for a maintenance activity. Figure 4.1 
demonstrates the framework of our proposed method. 
 

 
Figure 4.1. Framework of the Proposed Method 

 
The datasets utilized in this study include the signal equipment registry, the trouble calls history, 
and the weather condition data. In the data processing step, we aim to convert event-based data 
into a data form that could be better used in the machine learning model. We use One-Hot 
Encoding and K-Fold Target Encoding to process categorical data in the original dataset and a 
window-based method to extract important features monthly.  
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Figure 4.2 illustrates the input and output of the data processing method. The categorical data are 
either transformed into binary values through One-Hot Encoding or decimals in between 0 and 1 
using Target Encoding. More features are generated via the window-based feature extraction 
method, which will be explicated later in this section. The label in Figure 2 refers to the class 
label for a given observation, indicating whether a signal failure occurred in the given month (1) 
or not (0). In the modeling step, due to the rarity of failure events, we resample the highly 
imbalanced dataset before training. Various resampling strategies, including random 
oversampling, the Synthetic Minority Over-sampling Technique (SMOTE), the Adaptive 
Synthetic sampling approach (ADASYN), and random undersampling, are each tested in 
experiments. After resampling the training dataset, we train multiple models using Bayesian 
Optimization and 5-fold Cross Validation, and calculate the average AUC scores for the trained 
models with different combinations of hyperparameter settings. The best model (with the highest 
average AUC score after 5-fold Cross Validation) is selected and applied to the testing dataset. 
 

 
Figure 4.2. Input and Output of the Data Processing Approach 

 

4.1. Categorical Data Encoding 

In a machine learning model, the output variable is affected not only by quantitative (numerical) 
variables, but also qualitative (categorical) variables. In order to use categorical variables in 
machine learning models, it is necessary to transform the categorical data into numerical values 
using encoding techniques (Potdar et al., 2017). 
 
One-Hot Encoding is one of the most common encoding techniques in categorical data 
processing. It converts categorical variables into multiple lists of binaries indicating the presence 
(1) or absence (0) of the variable (Potdar et al., 2017). Let 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛} denote 𝑛𝑛 
categorical features and 𝑙𝑙𝑖𝑖 represent the number of distinct values of feature 𝑥𝑥𝑖𝑖. One-Hot 
Encoding transforms a single 𝑥𝑥 with 𝑙𝑙 distinct values to 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, … , 𝑧𝑧𝑙𝑙}, where 𝑧𝑧 ∈ {0,1}. 
However, as the cardinality of the categorical variable increases, using One-Hot Encoding may 
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create too many predictors, which can reduce the model’s performance and be computationally 
expensive. 
 
Target Encoding is an alternative encoding scheme for high-cardinality categorical data that does 
not increase the dimensionality of the original dataset. This scheme replaces the categorical 
feature with the posterior probability of the target label, conditioned by the categorical value and 
the prior probability of the target label over all data samples (Micci-Barreca, 2001). Assume a 
feature 𝑥𝑥 has 𝑙𝑙 distinct values, that is 𝑥𝑥 ∈ 𝑆𝑆 where 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑙𝑙}. For each 𝑠𝑠𝑖𝑖, the 
replacement value can be calculated using the below equation (1): 
 

𝑃𝑃(𝑡𝑡 = 1 | 𝑥𝑥 = 𝑠𝑠𝑖𝑖) = 𝑃𝑃(𝑡𝑡=1 & 𝑥𝑥=𝑠𝑠𝑖𝑖)
𝑃𝑃(𝑥𝑥=𝑠𝑠𝑖𝑖)

  (1) 

 
Where 𝑡𝑡 ∈ {0, 1} is the target label, indicating the presence (𝑡𝑡 = 1) of a failure or not (𝑡𝑡 = 0). 
Since Target Encoding uses some information from the target to predict the target, it has a 
tendency of overfitting to the training dataset, especially when the distribution of the categorical 
features in the training dataset and the testing dataset are significantly different (Grover, 2019). 
Therefore, we apply its extension, K-Fold Target Encoding, to reduce the risk of overfitting 
(Pourya, 2019). We divide the dataset into K-stratified folds, where 𝐾𝐾 = 5. Then, we replace the 
categorical values in fold 𝑖𝑖 with a mean target using the equation (1) for the rest of the 𝐾𝐾 − 1 
folds. 
 

4.2. Feature Extraction 

We propose a window-based feature extraction method to obtain useful information from past 
events in a 𝑘𝑘 time-period window. In this study, we use one month as the minimum time-period 
for prediction. The proposed feature extraction approach contains three parts, as follows.  
 
In a 𝑘𝑘-month window, we can: 1) find the latest event for each entity, then extract some event 
features (e.g., failure cause, maintenance action) using One-Hot Encoding and calculate the 
number of days since the last event occurred. Assuming entity 𝑣𝑣𝑞𝑞 has 𝑝𝑝 events {e1, e2, e3, … , ep} 
(in chronological order) recorded in a 𝑘𝑘 -month window [j, j + k− 1] , our method generates 
features from the 𝑝𝑝𝑡𝑡ℎ event and the number of days since the 𝑝𝑝𝑡𝑡ℎ event occurred (first day in (j +
k) month – tep). 2) We search through the 𝑘𝑘-month window and count the number of events that 
occurred in each month. 𝑘𝑘 features will then be generated by the second part. 3) Then, we can 
move forward the 𝑘𝑘-month window one month to [j + 1, j + k] and repeat the above steps until 
j + k reaches the latest month recorded in the original dataset. 
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Algorithm 4.1 (below) shows a pseudocode of steps 1) and 2) for target month May 2019 (i.e. 
predicting rail signal failures in May 2019) based on a 12-month window. 

Algorithm 4.1: 
1   target_month = 2019-05 
2   k = 12 
3   features = empty list 
4   for v in V: 
5  feature_v = empty list 
6  events_for_v = empty list 
7  for e in E: 
8   if e.month < target_month-k or e.month >= target_month: 
9   continue 
10   if e.entity == v: 
11    events_for_v.append(e) 
12 # do step 1) 
13 find the latest event ep from events_for_v 
14 feature_v.append(Categorical_Encoding(ep)) 
15 days_past_ep = (target_month – ep.date).days 
16 feature_v.append(days_past_ep) 
17 # do step 2) 
18 for i from 1 to k: 
19  num = 0 
20  for e in events_for_v: 
21   if e.month == target_month-i: 
22    num = num + 1 
23  feature_v.append(num) 
24 # generate label 
25 for e in E: 
26  label = 0 
27  if e.entity==v and e.month==target_month: 
28   label = 1 
29 feature_v.append(label) 
30 features.append(feature) 

 

4.3. Resampling 

Most machine learning algorithms were developed based on the assumption that the number of 
observations in different classes are similar (Krawczyk, 2016). However, in rare event analysis, 
the distribution of the observations is largely skewed, having a very small number of failures and 
a large proportion of normal events. 
 
This leads to a problem in that machine learning algorithms may ignore the minority class (i.e., 
failures). An approach for addressing the issue of data imbalance is to resample the training dataset. 
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There are two main types of resampling techniques: oversampling and undersampling. 
Oversampling expands the minority by randomly duplicating the minority observations or by 
creating synthetic minority examples, whereas the undersampling technique rebalances the 
training dataset by deleting some majority observations. Despite their advantages, both resampling 
methods could also negatively affect model performance (Menardi & Torelli, 2014). Oversampling 
can increase the likelihood of overfitting and undersampling can discard useful information from 
the majority class. In our experiments, we test four different resampling methods, as follows. 
 
Random Oversampling is the most common oversampling method. It expands the dataset by 
simply replicating data samples of the minority class (Menardi & Torelli, 2014). Different from 
other synthetic oversampling methods, random oversampling does not generate new samples. 
Although this technique is simple to implement and widely used, it can cause overfitting on the 
duplicated samples of the minority class and be ineffective for the classifier to find a borderline 
between the majority class and the minority class. 
 
SMOTE is a state-of-art oversampling technique that rebalances the dataset by creating synthetic 
examples of the minority class. Instead of oversampling with replacement, this method takes each 
sample of the minority class and generates new examples by joining the 𝑘𝑘  (𝑘𝑘 = 5  in our 
experiments) minority class’s nearest neighbors (Chawla et al., 2002). However, SMOTE may not 
deal well with high dimensional data and may lead to over-generalization. 
 
ADASYN is another state-of-art synthetic oversampling approach that was inspired by SMOTE. 
In addition to rebalancing the distribution of the original dataset, this method can adaptively shift 
the classification decision boundary towards the difficult-to-learn samples (He et al., 2008). When 
rebalancing a multi-label dataset, SMOTE provides equal opportunities for increasing each 
minority class, whereas ADASYN oversamples the dataset according to the distribution of the 
minority class. Our study focuses on binary classification, where the minority class contains only 
one label. When rebalancing a two-label dataset, ADASYN creates samples with a little more 
variance to make it more realistic as compared to SMOTE. A drawback of ADASYN is that it is 
unable to identify noisy instances, indicating that outliers in the dataset may affect this method’s 
performance (Dattagupta, 2018). 
 
Random Undersampling is also widely used to address imbalanced data. It rebalances the dataset 
by randomly removing a portion of samples from the majority class (Menardi & Torelli, 2014). 
This method can accelerate the learning process because it decreases the size of the training dataset, 
but some useful information from the majority class may be missed.  
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Table 2 compares the advantages (except balancing the dataset) and limitations of the resampling 
techniques mentioned above. Each method has its limitations. A comparative study and its results 
are demonstrated in the RESULTS section based on our datasets. 
 

Table 4.1. Comparison of Alternative Resampling Techniques 
Method Advantages  Limitations 
Random 
Oversampling 

Easy to implement Overfitting on the minority; 
increase the training time 

SMOTE Generate synthetic data Poor performance on high 
dimensional data; over 
generalization 

ADASYN Generate synthetic 
data; More realistic 
than SMOTE 

Unable to deal with outliers 

Random 
Undersampling 

Reduce the training 
time 

Miss certain information 
from the majority class  

 

4.4. Machine Learning Algorithm 

The Machine Learning aims to map a list of input variables 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛} to an output 
variable 𝑌𝑌. In this case, 𝑋𝑋 represents the feature variables that are generated from Table 3.1 after 
data processing, and 𝑌𝑌 is a binary label that indicates the presence of a signal failure (1) or not (0) 
in a particular month for prediction. 
 
We use XGBoost, a widely used scalable implementation of the tree boosting algorithm, in this 
study. This method assembles a considerable number of weak but complementary CARTs to create 
a more robust classifier. Compared to Gradient Boost Decision Trees, improvements were made 
in the regularized learning object of XGBoost, which is simpler and easier to parallelize (Chen & 
Guestrin, 2016). The following Equation (1) demonstrates the regularized objective, which is to 
be minimized in the learning process. 
 
      𝐿𝐿(ϕ) = ∑ 𝑙𝑙(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖 + ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾

𝑘𝑘     (1) 
 
The 𝑙𝑙 function denotes a loss function that measures the difference between the ground truth 𝑦𝑦𝑖𝑖 
and the estimated value 𝑦𝑦�𝑖𝑖. The Ω function is the regression tree function that penalizes the model 
complexity. This can smooth the final learned weight to reduce the risk of overfitting. More 
detailed explanations can be found in Chen & Guestrin (2016). 
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In our experiments, the XGBoost algorithm is implemented using the XGBoost python package 
and the Scikit-Learn python library. The performance of the model is evaluated using the Area 
Under the receiver operating characteristic Curve (AUC) because typical evaluation metrics, such 
as accuracy, may not be appropriate when the data is imbalanced (Chawla et al., 2002). The 
Receiver Operating Characteristic (ROC) curve illustrates a binary classifier performance by 
plotting the true positive rate against the false positive rate over a range of threshold settings of 
the decision criterion. The AUC is the proportion of the area under the ROC curve compared to 
the entire graph, which is considered as a preferred single-valued measure of model performance  
(Swets, 1988). When the AUC is 0.5, that is, when the ROC curve is on the diagonal, it means that 
the classification ability of the model is as poor as random guessing. When the AUC is 1, it 
indicates a “perfect” model. Furthermore, Bayesian optimization with 5-fold cross validation is 
applied for hyperparameter selection. For each combination of hyperparameters, we conduct a 5-
fold cross validation and calculate the average AUC score. After the full iterations of Bayesian 
optimization, an optimal model with the highest score is chosen to use for the testing dataset. 
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5. Results 

Given the dataset described in section 3, 14 possible input variables are generated based on the 
proposed methods. The variables and their descriptions are listed in Table 5.1. Variables 1, 2, 
and 3 represent the location information of the signal unit, which are retrieved from the Signal 
Equipment Registry dataset. Variables 4-8 represent the failure and corresponding maintenance 
work from the Trouble Calls history dataset. Variables 9-12 are generated by the proposed 
window-based feature extraction method. Variables 13 and 14 are the weather condition of the 
region. To deal with the eight categorical variables, we apply One-Hot Encoding to Variable 1 
and 2, and apply 5-Fold Target Encoding to the other variables (i.e., Variables 3-8). 
 

Table 5.1. Input Variables 
No. Variables Type Cardinality 

(size of 𝒊𝒊) 
Descriptions 

1 𝐷𝐷𝑖𝑖 Categorical 4 Division 
2 𝑆𝑆𝐷𝐷𝑖𝑖 Categorical 6 Subdivision 
3 𝐿𝐿𝑖𝑖 Categorical 66 Line where the signal is located 
4 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒𝑖𝑖 Categorical 7 Type of work being performed for 

the last failure (e.g., Corrective, 
Preventive, Capital) 

5 𝑝𝑝𝑝𝑝𝑖𝑖 Categorical 96 Problem Code (the symptom 
observed) of the last failure 

6 𝑓𝑓𝑝𝑝𝑖𝑖 Categorical 144 Failure Code (which equipment 
failed and its malfunction) of the last 
failure 

7 𝑝𝑝𝑝𝑝𝑖𝑖 Categorical 103 Cause Code (what caused the failure) 
of the last failure 

8 𝑎𝑎𝑝𝑝𝑖𝑖 Categorical 35 Action Code (step taken to resolve 
the failure) of the last failure 

9 𝑚𝑚 Numerical  The month in which failures are 
being predicted 

10 𝑑𝑑𝑎𝑎𝑦𝑦 Numerical  Number of days since the last failure 
occurred 

11 𝑛𝑛𝑓𝑓𝑖𝑖   Numerical 𝑘𝑘 Number of failures in each month of 
the 𝑘𝑘-month window 

12 𝑡𝑡𝑛𝑛𝑓𝑓 Numerical  Total number of failures that 
occurred in the 𝑘𝑘-month window 

13 𝑡𝑡 Numerical  Average temperature of the last 
month in Fahrenheit 

14 𝑝𝑝 Numerical  Total precipitation of the last month 
in millimeters 

 
The original dataset contains all rail transit signal failures that occurred from May 2018 to June 
2021. We apply a 12-month window feature extraction method. Due to data limitations, we only 
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consider the predicting months from May 2019 to June 2021. In this case, the processed dataset 
contains 26 months of data, with 18,623 observations for each month. 
 
We then split the dataset into a training dataset and a testing dataset. Since the past data may 
contain important information for predicting future events, we use the dataset from May 2019 to 
December 2020 as the training dataset and the others (i.e., from January 2021 to June 2021) as 
the testing dataset. The distributions of each class for both training data and testing data are 
displayed in Table 5.2. Both datasets are highly imbalanced and contain around 3% of the failure 
class. 
 

Table 5.2. Class Distribution of the Training Data 
Dataset Class Sample amount Percentage 

Training Failure 12,298 3.3% 
Normal 360,162 96.7% 

Testing Failure 3,270 2.9% 
Normal 108,468 97.1% 

 
We applied various resampling techniques to the training dataset to balance the failure class and 
the normal class to equal sample size. Therefore, the training dataset contains 360,162 samples 
of each class after random oversampling, SMOTE oversampling, and ADASYN oversampling, 
while containing only 12,298 samples of each class after random undersampling.  
 
The model performances of each resampling technique used as well as original imbalanced data 
are illustrated using ROC curves in Figure 5.1 (below). It shows that the random undersampling 
approach has the highest tested AUC value (0.75) among all the test cases. It also reduced model 
training time in comparison to the oversampling methods. 
 

 
Figure 5.1. AUCs of XGBoost Models using Different Resampling Techniques 

 
In addition, we apply Random Forest and traditional fully connected Neural Network algorithms 
to the non-resampled dataset and the random undersampled dataset. The results of each model 
are displayed in Table 5.3 below. On the Random Forest model and the Neural Network model, 
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random undersampling not only shortens the model training time, but also slightly increases the 
AUC value. Further, the XGBoost algorithm produces a better result for both the non-resampled 
dataset and the undersampled dataset than Random Forest and Neural Network in our 
experiments. 
 

Table 5.3. AUCs of Various Machine Learning Models using Random Undersampled 
Dataset and Original Dataset Without Resampling 

  XGBoost RF NN 
Not 

Resampled 
Training 0.7498 0.8086 0.7477 
Testing 0.7447 0.7391 0.7325 

Random 
Undersampled 

Training 0.7437 0.8423 0.7499 
Testing 0.7451 0.7412 0.7365 

 
To visualize the performance of the selected model (XGBoost and random undersampling), we  
visualize the relationship between the percentage of signals screened using our machine learning 
algorithm (prediction), and the percentage of the total number of rail signal failures that could be 
found in those locations (reality).  
 
For example, if we take January 2021 as the predicting month, Figure 5.2(a) shows the failure 
percentage curve, which is plotted using the failure probability table shown in Figure 5.2 (b). The 
y-axis represents the percentage of actual failures in January 2021 and the x-axis stands for the 
percentage of signals among all 18,623 signal units. The points on the plots are calculated by 
ranking the signals based on estimated failure probability in descending order, as is displayed in 
Figure 5.2 (b). According to the failure percentage curve for January 2021 (shown in Figure 5.2 
(a)), screening the top 10% of signals may identify around 35% of signal failures in advance. 
 

 
Figure 5.2. Failure Percentage Curves (a) and Estimated Probability of Failed Signal Table (b) of 

January 2021 Prediction 
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Figure 5.3 (below) shows the ranking of the feature importance in the selected model. The 
importance of each feature is calculated by its “weight,” which is the number of times the feature 
appears in a tree. As shown in Figure 5.3, the y-axis displays the features used in the model and 
the x-axis represents the “weight.” The feature “line,” which was processed using target 
encoding, is most useful in the construction of the boosted decision trees within the model. This 
may indicate that some location-specific characteristics might affect signal failure occurrence. 
The “pmonth_total” variable represents the total number of failures that happened to the signal 
within the past 12 months. This may indicate that the locations with large numbers of signal 
failures may be likely to experience failures again in the future. The third feature 
“lastOccurDays” refers to the number of days between the first day of the predicting month and 
the date when the most recent failure occurred. The different actions operated for the past failure 
may also influence the probability of signal failure in the future. For example, if the equipment is 
replaced, it is supposed to have better durability than the one that is simply repaired or rechecked 
in the same conditions. Temperature is also important for predicting signal failures. For example, 
in extremely hot weather, failures may occur due to blown fuses and cable faults (Greenham et 
al., 2020). In addition, it is interesting to observe that the features produced by target encoding 
(i.e., Line, Action Code, Failure Code, Cause Code, Problem Code, Type) are all considered 
more important than the features generated by One-Hot Encoding. 
 

 
Figure 5.3. Feature Importance Plot for the Proposed Model 
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6. Conclusions 

This report proposed an event-based data analysis method to generate data that can be better used 
in a machine learning model to predict failures of urban rail transit signals. The proposed data 
processing approach consists of a combination of One-Hot Encoding, 5-fold Target Encoding, and 
window-based feature extraction. We validate the approach using the XGBoost algorithm and 
Bayesian Optimization for hyperparameter selection. Four resampling methods: random 
oversampling, random undersampling, SMOTE, and ADASYN were also tested and compared to 
the model using the original imbalanced dataset. Our proposed method can capture about 35% of 
total failures from 10% of screened signal locations. In the future, additional information (e.g., 
equipment age, sensory information) may be incorporated into model improvements. 
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