
 CAIT-UTC-REG 43

Artificial Intelligence-Aided Rail Transit

Infrastructure Data Mining

FINAL REPORT

March, 2022

Submitted by:

Xiang Liu, Ph.D. Junyan Dai
Associate Professor Graduate Research Assistant
Rutgers, The State University Rutgers, The State University
Department of Civil & Envir. Eng. Department of Civil & Envir. Eng.
500 Bartholomew Road 500 Bartholomew Road
Piscataway, NJ, 08854 Piscataway, NJ 08854

External Project Manager

David Kraft
Sr. Director, Enterprise Asset Management Program Administration

Metropolitan Transportation Authority

In cooperation with

Rutgers, The State University of New Jersey

And
U.S. Department of Transportation
Federal Highway Administration

2

Disclaimer Statement

The contents of this report reflect the views of the authors,
who are responsible for the facts and the accuracy of the

information presented herein. This document is disseminated
under the sponsorship of the Department of Transportation,
University Transportation Centers Program, in the interest of

information exchange. The U.S. Government assumes no
liability for the contents or use thereof.

The Center for Advanced Infrastructure and Transportation (CAIT) is a Regional UTC Consortium
led by Rutgers, The State University. Members of the consortium are Atlantic Cape Community
College, Columbia University, Cornell University, New Jersey Institute of Technology, Polytechnic
University of Puerto Rico, Princeton University, Rowan University, SUNY - Farmingdale State
College, and SUNY - University at Buffalo. The Center is funded by the U.S. Department of
Transportation.

3

1. Report No.

 CAIT-UTC-REG 43
2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Artificial Intelligence-Aided Rail Transit Infrastructure
Data Mining

5. Report Date

MARCH, 2022
6. Performing Organization Code

CAIT/Rutgers University
7. Author(s)

Xiang Liu https://orcid.org/0000-0002-4348-7432
Junyan Dai https://orcid.org/0000-0003-2647-4178

8. Performing Organization Report No.

CAIT-UTC-REG 43

9. Performing Organization Name and Address

Center for Advanced Infrastructure and Transportation
Rutgers, The State University of New Jersey
100 Brett Road, Piscataway, NJ 08854

10. Work Unit No.

11. Contract or Grant No.

69A3551847102
12. Sponsoring Agency Name and Address

Center for Advanced Infrastructure and Transportation
Rutgers, The State University of New Jersey
100 Brett Road, Piscataway, NJ 08854

13. Type of Report and Period Covered

Final Report
02/01/2021-03/31/2022
14. Sponsoring Agency Code

15. Supplementary Notes

U.S. Department of Transportation/OST-R
1200 New Jersey Avenue, SE
Washington, DC 20590-0001
16. Abstract

Signals are an important part of the urban rail transit system. Signals being in functioning
condition is key to rail transit safety. Predicting rail transit signal failures ahead of time has
significant benefits with regard to operating safety and efficiency. This paper proposes a
machine learning method for predicting urban rail transit signal failures one month in
advance, based on records of past failures and maintenance events, as well as other
information (e.g., location and weather). Because signal failure is a relatively rare event,
imbalanced data mining techniques are used to address its prediction. A case study based on
data provided by a major rail transit agency in the United States is developed to illustrate the
application of the proposed machine learning method. The results show that our model can
be used to identify approximately one third of signal failures one month ahead of time by
focusing on 10% of locations on the network. This method can be used by rail transit agencies
as a risk screening and ranking tool to identify high-risk hot spots for prioritized inspection
and maintenance, given limited resources.

17. Key Words

Urban Rail Transit, Signal, Machine
Learning, Imbalanced Data Mining

18. Distribution Statement

19. Security Classification (of this report)

Unclassified
20. Security Classification (of this page)

Unclassified
21. No. of Pages

Total #25
22. Price

Form DOT F 1700.7 (8-69)

4

Acknowledgments
This project was financially supported by the Center for Advanced Infrastructure and
Transportation (CAIT), a University Transportation Center (UTC) supported by
USDOT-OST-R. We are grateful to the anonymous rail agency for providing their
infrastructure asset data for this research.

5

Contents
1. Introduction... 6

2. Literature Review and Knowledge Gaps ... 8

2.1. Literature Review .. 8

2.2 Knowledge Gaps .. 8

3. Data... 10

4. Methodologies .. 11

4.1. Categorical Data Encoding .. 12

4.2. Feature Extraction .. 13

4.3. Resampling .. 14

4.4. Machine Learning Algorithm... 16

5. Results .. 18

6. Conclusions... 22

REFERENCES ... 23

6

1. Introduction

Urban rail transit is an important, safe, efficient, and environmentally friendly mode of passenger
transport. Signal lights, as an important part of the rail transit system, can convey specific
instructions to drivers to ensure the safe operations of trains. However, damage or failure of the
signal often results in unpredictable delays and even safety issues (note that due to the “fail-safe”
design of rail signals, a failure will typically lead to the “stop” indication, resulting in service
delays). For example, in New York City, “the percent of morning rush hours scrambled by subway
signal problems declined from 92% in 2018 to 78% in 2019 but is back up to 80% for the first half
of 2021 and a very troubling 88% for the second quarter, April through June 2021”, according to
Riders Alliance (Riders Alliance, 2022). Since many signals were installed in the early 20th
century, aging equipment was recognized as one of the major causes of the transit crisis in New
York City in 2017 (Fitzsimmons, 2017). To give another example, in the Bay Area Rapid Transit
(BART) system, in-service signal failures account for 50% of infrastructure-related delays that
result in slowed service for about 400 hours per year (Wiedmann, 2021). In addition, the
simultaneous malfunctioning of multiple devices will lead to heavy maintenance tasks and
significant economic losses due to transit shutdowns. By predicting rail transit signals that are
prone to failure, one can move toward predictive asset management, achieving a balance between
safety, efficiency, and economy.

The widely used machine learning algorithm XGBoost (eXtreme Gradient Boosting) is a scalable
implementation of the tree boosting algorithm. It is a state-of-art machine learning method which
has good applications in many areas. Take Kaggle competition as an example: XGBoost is the
machine learning method that appears most frequently in the winning solutions (Chen & Guestrin,
2016). In this report, we develop an XGBoost-based model to predict rail transit signal failures for
the following month (prediction of failure one month in advance).

Rail transit companies have recorded large amounts of event-based data, such as maintenance logs
of signal equipment. Event-based data consists of a set of events and a set of participating entities.
Event-based datasets are very common, including email traffic, telephone calls, and research
publications (O’Madadhain et al., 2005).

Because it is impractical to install sensory devices on every single piece of signal equipment to
collect real-time equipment condition data, there is a practical value to the recorded event data
being able to predict signal failure by location. For this type of prediction, one particular challenge
is dealing with the rarity of failure events. There were only a small portion of signals reported to
have failures in the study period, while most other signals operated normally. In the context of
classification in the machine learning field, this poses difficulties since many machine learning
algorithms used in classification prediction models are designed based on the assumption that the

7

class distribution is equal or slightly imbalanced (Fernández et al., 2018). For rare event prediction,
imbalanced data mining (IDM) techniques can be used (Chawla et al., 2002). For IDM, resampling
is a widely used statistical technique, in which the class distribution of the training data is changed
by either increasing the minority data sample or removing the majority data sample. A number of
resampling techniques were proposed and validated in previous studies (Chawla et al., 2002; He
et al., 2008; Menardi & Torelli, 2014). However, no resampling method can guarantee superior
performance over others (Provost, 2000). Therefore, we conduct a comparative experiment for
various resampling methods, including random oversampling, Synthetic Minority Oversampling
Technique (SMOTE), ADAptive SYNthetic sampling approach (ADASYN), and random
undersampling.

The remainder of this report is organized as follows. Firstly, Chapter 2 discusses related works and
identifies knowledge gaps in the existing literature. Chapter 3 introduces the dataset utilized in our
experiments. Then, the proposed approach for failure prediction of rail transit signals is presented
in the Chapter 4. In Chapter 5, we test the effectiveness of various approaches in addressing
imbalanced data and discuss the model performance in comparison with the empirical data. Finally,
our conclusions as well as future work are elaborated in the last chapter.

8

2. Literature Review and Knowledge Gaps

2.1. Literature Review
The literature includes many prior studies which have been conducted on rail transit signal systems.
Tu et al. proposed a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
method for evaluating safety degrees of transit signal systems according to engineering practices
and a questionnaire survey (Tu et al., 2011). Zhang et al. presented a new risk assessment method
called Fuzzy-FMECA (Failure Mode, Effects and Criticality Analysis) for railway signal systems
(Zhang et al., 2013). Ren et al. studied the application of cloud computing technology in rail transit
signal systems using the Monte Carlo method for safety and reliability analysis (Ren et al., 2020).
The above studies focus on the design of the signal system rather than the safe operation of each
signal.

XGBoost was originally developed from the Classification And Regression Trees (CART)
algorithm (Breiman et al., 1984). Then, in 1996, Freund and Schapire proposed AdaBoost which
combines many relative weak trees to create a highly accurate classifier (Freund & Schapire, 1996).
Friedman et al., in 2000, interpreted the boosting as an additive logistic regression model (i.e.,
AdaBoost) which aims to minimize exponential error (J. Friedman et al., 2000), and soon proposed
a gradient boosting machine to address the general supervised problem by combining boosting and
CART (J. H. Friedman, 2001). Recently, Chen et al. proposed a scalable and efficient
implementation of the gradient boosting machine, which has been widely accepted and used to
address many machine learning challenges (Chen & Guestrin, 2016).

The issue of data imbalance has also been studied in much of the literature. Krawczyk discussed
major challenges for developing a method to treat imbalanced data (Krawczyk, 2016). He
mentioned that imbalanced data can be tackled from the data level and the algorithm level. On the
data level, many resampling methods have been proposed to modify the distribution of data
samples and have been validated as effective in the field of classification problem. Ling and Li
proposed the random oversampling method to duplicate the existing minority samples (Ling & Li,
1998). SMOTE, proposed by Chawla et al. and ADASYN, proposed by He et al. both create new
samples for minority class instead of duplicating the existing ones (Chawla et al., 2002; He et al.,
2008). There is also significant literature on the effects of random undersampling (Hasanin &
Khoshgoftaar, 2018; Prusa et al., 2015). On the algorithm level, one prevalent approach is to use
appropriate evaluation metrics. Swets proposed a new measure of model performance that can
better reflect the degree of accuracy for binary classification for imbalanced data (Swets, 1988).

2.2 Knowledge Gaps
Although many previous studies have developed various approaches for analyzing safety degrees
of rail transit signal systems, very few have studied the failure prognosis for each single signal

9

unit. In addition, few studies have used event-based data for rail transit signal data analysis. It is
also challenging to develop a machine learning based model for imbalanced data in such a rare
event data analysis. Since a resampling method that is well-validated on one dataset may not have
the same effect on others, it is also intriguing to apply various resampling methods comparatively
to the signal failure event dataset. This knowledge gap has motivated the development of this
research, which aims to develop a machine learning based approach to predict the failure of each
signal, using event data from maintenance records.

10

3. Data

The signal equipment registry and the trouble call history from a major rail transit agency in the
United States and the weather condition data from NOAA’s National Centers for Environmental
Information are utilized to confirm the validity of our proposed failure prognosis method. The
signal equipment registry dataset contains primary information pertaining to the signals when they
were registered (e.g., Class, Division, Subdivision, Line). The trouble calls dataset records the
signals’ failure histories and corresponding maintenance work (e.g., Date Reported, Problem Code,
Cause Code, Action Code) from May 2018 to June 2021. The weather data includes average
temperature and total precipitation for each month from May 2019 to June 2021. Table 3.1 displays
a detailed list of variables gathered from the three datasets as well as their descriptions. To reduce
the model complexity while keeping the effectiveness of the predictive model, multiple records
from the signal equipment registry and the trouble call history datasets, where various pieces of
signal equipment work jointly at the same location, are combined into one observation. For
example, a failure that occurred on the insulted joint of a signal on May 1, 2021 and a failure that
occurred on the signal head of the same signal on May 15, 2021 will be counted as 2 failures of
the signal in May 2021. A total number of 18,623 observations are collected and used in our
experiments.

Table 3.1. Variables Retrieved from the Datasets
Variables Descriptions
Division Historic Operating Company (Division) where the work is

to be performed
Subdivision Subdivision where the signal is located
Line Line where the signal is located
Date Reported Date and time that the Transit employee reported the trouble
Type Type of work being performed (e.g., Corrective, Preventive,

Capital)
Problem Code The reported issue – the symptom observed
Failure Code Which equipment failed and its malfunction
Cause Code What caused the signal failure
Action Code Step taken to resolve the failure
Temperature Monthly average temperature in degrees Fahrenheit
Precipitation Monthly total precipitation in millimeters

11

4. Methodologies

We define an event-based dataset containing a set of events (i.e., failures and corresponding
maintenance actions) 𝐸𝐸 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑚𝑚} and a set of entities (i.e., signal units) 𝑉𝑉 =
{𝑣𝑣1,𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑛𝑛}. Every event has a timestamp 𝑡𝑡𝑖𝑖. For example, the trouble calls dataset
mentioned in the above section records a specific date 𝑡𝑡𝑖𝑖 for a maintenance activity. Figure 4.1
demonstrates the framework of our proposed method.

Figure 4.1. Framework of the Proposed Method

The datasets utilized in this study include the signal equipment registry, the trouble calls history,
and the weather condition data. In the data processing step, we aim to convert event-based data
into a data form that could be better used in the machine learning model. We use One-Hot
Encoding and K-Fold Target Encoding to process categorical data in the original dataset and a
window-based method to extract important features monthly.

12

Figure 4.2 illustrates the input and output of the data processing method. The categorical data are
either transformed into binary values through One-Hot Encoding or decimals in between 0 and 1
using Target Encoding. More features are generated via the window-based feature extraction
method, which will be explicated later in this section. The label in Figure 2 refers to the class
label for a given observation, indicating whether a signal failure occurred in the given month (1)
or not (0). In the modeling step, due to the rarity of failure events, we resample the highly
imbalanced dataset before training. Various resampling strategies, including random
oversampling, the Synthetic Minority Over-sampling Technique (SMOTE), the Adaptive
Synthetic sampling approach (ADASYN), and random undersampling, are each tested in
experiments. After resampling the training dataset, we train multiple models using Bayesian
Optimization and 5-fold Cross Validation, and calculate the average AUC scores for the trained
models with different combinations of hyperparameter settings. The best model (with the highest
average AUC score after 5-fold Cross Validation) is selected and applied to the testing dataset.

Figure 4.2. Input and Output of the Data Processing Approach

4.1. Categorical Data Encoding

In a machine learning model, the output variable is affected not only by quantitative (numerical)
variables, but also qualitative (categorical) variables. In order to use categorical variables in
machine learning models, it is necessary to transform the categorical data into numerical values
using encoding techniques (Potdar et al., 2017).

One-Hot Encoding is one of the most common encoding techniques in categorical data
processing. It converts categorical variables into multiple lists of binaries indicating the presence
(1) or absence (0) of the variable (Potdar et al., 2017). Let 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛} denote 𝑛𝑛
categorical features and 𝑙𝑙𝑖𝑖 represent the number of distinct values of feature 𝑥𝑥𝑖𝑖. One-Hot
Encoding transforms a single 𝑥𝑥 with 𝑙𝑙 distinct values to 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, … , 𝑧𝑧𝑙𝑙}, where 𝑧𝑧 ∈ {0,1}.
However, as the cardinality of the categorical variable increases, using One-Hot Encoding may

13

create too many predictors, which can reduce the model’s performance and be computationally
expensive.

Target Encoding is an alternative encoding scheme for high-cardinality categorical data that does
not increase the dimensionality of the original dataset. This scheme replaces the categorical
feature with the posterior probability of the target label, conditioned by the categorical value and
the prior probability of the target label over all data samples (Micci-Barreca, 2001). Assume a
feature 𝑥𝑥 has 𝑙𝑙 distinct values, that is 𝑥𝑥 ∈ 𝑆𝑆 where 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑙𝑙}. For each 𝑠𝑠𝑖𝑖, the
replacement value can be calculated using the below equation (1):

𝑃𝑃(𝑡𝑡 = 1 | 𝑥𝑥 = 𝑠𝑠𝑖𝑖) = 𝑃𝑃(𝑡𝑡=1 & 𝑥𝑥=𝑠𝑠𝑖𝑖)
𝑃𝑃(𝑥𝑥=𝑠𝑠𝑖𝑖)

 (1)

Where 𝑡𝑡 ∈ {0, 1} is the target label, indicating the presence (𝑡𝑡 = 1) of a failure or not (𝑡𝑡 = 0).
Since Target Encoding uses some information from the target to predict the target, it has a
tendency of overfitting to the training dataset, especially when the distribution of the categorical
features in the training dataset and the testing dataset are significantly different (Grover, 2019).
Therefore, we apply its extension, K-Fold Target Encoding, to reduce the risk of overfitting
(Pourya, 2019). We divide the dataset into K-stratified folds, where 𝐾𝐾 = 5. Then, we replace the
categorical values in fold 𝑖𝑖 with a mean target using the equation (1) for the rest of the 𝐾𝐾 − 1
folds.

4.2. Feature Extraction

We propose a window-based feature extraction method to obtain useful information from past
events in a 𝑘𝑘 time-period window. In this study, we use one month as the minimum time-period
for prediction. The proposed feature extraction approach contains three parts, as follows.

In a 𝑘𝑘-month window, we can: 1) find the latest event for each entity, then extract some event
features (e.g., failure cause, maintenance action) using One-Hot Encoding and calculate the
number of days since the last event occurred. Assuming entity 𝑣𝑣𝑞𝑞 has 𝑝𝑝 events {e1, e2, e3, … , ep}
(in chronological order) recorded in a 𝑘𝑘 -month window [j, j + k− 1] , our method generates
features from the 𝑝𝑝𝑡𝑡ℎ event and the number of days since the 𝑝𝑝𝑡𝑡ℎ event occurred (first day in (j +
k) month – tep). 2) We search through the 𝑘𝑘-month window and count the number of events that
occurred in each month. 𝑘𝑘 features will then be generated by the second part. 3) Then, we can
move forward the 𝑘𝑘-month window one month to [j + 1, j + k] and repeat the above steps until
j + k reaches the latest month recorded in the original dataset.

14

Algorithm 4.1 (below) shows a pseudocode of steps 1) and 2) for target month May 2019 (i.e.
predicting rail signal failures in May 2019) based on a 12-month window.

Algorithm 4.1:
1 target_month = 2019-05
2 k = 12
3 features = empty list
4 for v in V:
5 feature_v = empty list
6 events_for_v = empty list
7 for e in E:
8 if e.month < target_month-k or e.month >= target_month:
9 continue
10 if e.entity == v:
11 events_for_v.append(e)
12 # do step 1)
13 find the latest event ep from events_for_v
14 feature_v.append(Categorical_Encoding(ep))
15 days_past_ep = (target_month – ep.date).days
16 feature_v.append(days_past_ep)
17 # do step 2)
18 for i from 1 to k:
19 num = 0
20 for e in events_for_v:
21 if e.month == target_month-i:
22 num = num + 1
23 feature_v.append(num)
24 # generate label
25 for e in E:
26 label = 0
27 if e.entity==v and e.month==target_month:
28 label = 1
29 feature_v.append(label)
30 features.append(feature)

4.3. Resampling

Most machine learning algorithms were developed based on the assumption that the number of
observations in different classes are similar (Krawczyk, 2016). However, in rare event analysis,
the distribution of the observations is largely skewed, having a very small number of failures and
a large proportion of normal events.

This leads to a problem in that machine learning algorithms may ignore the minority class (i.e.,
failures). An approach for addressing the issue of data imbalance is to resample the training dataset.

15

There are two main types of resampling techniques: oversampling and undersampling.
Oversampling expands the minority by randomly duplicating the minority observations or by
creating synthetic minority examples, whereas the undersampling technique rebalances the
training dataset by deleting some majority observations. Despite their advantages, both resampling
methods could also negatively affect model performance (Menardi & Torelli, 2014). Oversampling
can increase the likelihood of overfitting and undersampling can discard useful information from
the majority class. In our experiments, we test four different resampling methods, as follows.

Random Oversampling is the most common oversampling method. It expands the dataset by
simply replicating data samples of the minority class (Menardi & Torelli, 2014). Different from
other synthetic oversampling methods, random oversampling does not generate new samples.
Although this technique is simple to implement and widely used, it can cause overfitting on the
duplicated samples of the minority class and be ineffective for the classifier to find a borderline
between the majority class and the minority class.

SMOTE is a state-of-art oversampling technique that rebalances the dataset by creating synthetic
examples of the minority class. Instead of oversampling with replacement, this method takes each
sample of the minority class and generates new examples by joining the 𝑘𝑘 (𝑘𝑘 = 5 in our
experiments) minority class’s nearest neighbors (Chawla et al., 2002). However, SMOTE may not
deal well with high dimensional data and may lead to over-generalization.

ADASYN is another state-of-art synthetic oversampling approach that was inspired by SMOTE.
In addition to rebalancing the distribution of the original dataset, this method can adaptively shift
the classification decision boundary towards the difficult-to-learn samples (He et al., 2008). When
rebalancing a multi-label dataset, SMOTE provides equal opportunities for increasing each
minority class, whereas ADASYN oversamples the dataset according to the distribution of the
minority class. Our study focuses on binary classification, where the minority class contains only
one label. When rebalancing a two-label dataset, ADASYN creates samples with a little more
variance to make it more realistic as compared to SMOTE. A drawback of ADASYN is that it is
unable to identify noisy instances, indicating that outliers in the dataset may affect this method’s
performance (Dattagupta, 2018).

Random Undersampling is also widely used to address imbalanced data. It rebalances the dataset
by randomly removing a portion of samples from the majority class (Menardi & Torelli, 2014).
This method can accelerate the learning process because it decreases the size of the training dataset,
but some useful information from the majority class may be missed.

16

Table 2 compares the advantages (except balancing the dataset) and limitations of the resampling
techniques mentioned above. Each method has its limitations. A comparative study and its results
are demonstrated in the RESULTS section based on our datasets.

Table 4.1. Comparison of Alternative Resampling Techniques
Method Advantages Limitations
Random
Oversampling

Easy to implement Overfitting on the minority;
increase the training time

SMOTE Generate synthetic data Poor performance on high
dimensional data; over
generalization

ADASYN Generate synthetic
data; More realistic
than SMOTE

Unable to deal with outliers

Random
Undersampling

Reduce the training
time

Miss certain information
from the majority class

4.4. Machine Learning Algorithm

The Machine Learning aims to map a list of input variables 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛} to an output
variable 𝑌𝑌. In this case, 𝑋𝑋 represents the feature variables that are generated from Table 3.1 after
data processing, and 𝑌𝑌 is a binary label that indicates the presence of a signal failure (1) or not (0)
in a particular month for prediction.

We use XGBoost, a widely used scalable implementation of the tree boosting algorithm, in this
study. This method assembles a considerable number of weak but complementary CARTs to create
a more robust classifier. Compared to Gradient Boost Decision Trees, improvements were made
in the regularized learning object of XGBoost, which is simpler and easier to parallelize (Chen &
Guestrin, 2016). The following Equation (1) demonstrates the regularized objective, which is to
be minimized in the learning process.

 𝐿𝐿(ϕ) = ∑ 𝑙𝑙(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖 + ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾

𝑘𝑘 (1)

The 𝑙𝑙 function denotes a loss function that measures the difference between the ground truth 𝑦𝑦𝑖𝑖
and the estimated value 𝑦𝑦�𝑖𝑖. The Ω function is the regression tree function that penalizes the model
complexity. This can smooth the final learned weight to reduce the risk of overfitting. More
detailed explanations can be found in Chen & Guestrin (2016).

17

In our experiments, the XGBoost algorithm is implemented using the XGBoost python package
and the Scikit-Learn python library. The performance of the model is evaluated using the Area
Under the receiver operating characteristic Curve (AUC) because typical evaluation metrics, such
as accuracy, may not be appropriate when the data is imbalanced (Chawla et al., 2002). The
Receiver Operating Characteristic (ROC) curve illustrates a binary classifier performance by
plotting the true positive rate against the false positive rate over a range of threshold settings of
the decision criterion. The AUC is the proportion of the area under the ROC curve compared to
the entire graph, which is considered as a preferred single-valued measure of model performance
(Swets, 1988). When the AUC is 0.5, that is, when the ROC curve is on the diagonal, it means that
the classification ability of the model is as poor as random guessing. When the AUC is 1, it
indicates a “perfect” model. Furthermore, Bayesian optimization with 5-fold cross validation is
applied for hyperparameter selection. For each combination of hyperparameters, we conduct a 5-
fold cross validation and calculate the average AUC score. After the full iterations of Bayesian
optimization, an optimal model with the highest score is chosen to use for the testing dataset.

18

5. Results

Given the dataset described in section 3, 14 possible input variables are generated based on the
proposed methods. The variables and their descriptions are listed in Table 5.1. Variables 1, 2,
and 3 represent the location information of the signal unit, which are retrieved from the Signal
Equipment Registry dataset. Variables 4-8 represent the failure and corresponding maintenance
work from the Trouble Calls history dataset. Variables 9-12 are generated by the proposed
window-based feature extraction method. Variables 13 and 14 are the weather condition of the
region. To deal with the eight categorical variables, we apply One-Hot Encoding to Variable 1
and 2, and apply 5-Fold Target Encoding to the other variables (i.e., Variables 3-8).

Table 5.1. Input Variables
No. Variables Type Cardinality

(size of 𝒊𝒊)
Descriptions

1 𝐷𝐷𝑖𝑖 Categorical 4 Division
2 𝑆𝑆𝐷𝐷𝑖𝑖 Categorical 6 Subdivision
3 𝐿𝐿𝑖𝑖 Categorical 66 Line where the signal is located
4 𝑡𝑡𝑦𝑦𝑝𝑝𝑒𝑒𝑖𝑖 Categorical 7 Type of work being performed for

the last failure (e.g., Corrective,
Preventive, Capital)

5 𝑝𝑝𝑝𝑝𝑖𝑖 Categorical 96 Problem Code (the symptom
observed) of the last failure

6 𝑓𝑓𝑝𝑝𝑖𝑖 Categorical 144 Failure Code (which equipment
failed and its malfunction) of the last
failure

7 𝑝𝑝𝑝𝑝𝑖𝑖 Categorical 103 Cause Code (what caused the failure)
of the last failure

8 𝑎𝑎𝑝𝑝𝑖𝑖 Categorical 35 Action Code (step taken to resolve
the failure) of the last failure

9 𝑚𝑚 Numerical The month in which failures are
being predicted

10 𝑑𝑑𝑎𝑎𝑦𝑦 Numerical Number of days since the last failure
occurred

11 𝑛𝑛𝑓𝑓𝑖𝑖 Numerical 𝑘𝑘 Number of failures in each month of
the 𝑘𝑘-month window

12 𝑡𝑡𝑛𝑛𝑓𝑓 Numerical Total number of failures that
occurred in the 𝑘𝑘-month window

13 𝑡𝑡 Numerical Average temperature of the last
month in Fahrenheit

14 𝑝𝑝 Numerical Total precipitation of the last month
in millimeters

The original dataset contains all rail transit signal failures that occurred from May 2018 to June
2021. We apply a 12-month window feature extraction method. Due to data limitations, we only

19

consider the predicting months from May 2019 to June 2021. In this case, the processed dataset
contains 26 months of data, with 18,623 observations for each month.

We then split the dataset into a training dataset and a testing dataset. Since the past data may
contain important information for predicting future events, we use the dataset from May 2019 to
December 2020 as the training dataset and the others (i.e., from January 2021 to June 2021) as
the testing dataset. The distributions of each class for both training data and testing data are
displayed in Table 5.2. Both datasets are highly imbalanced and contain around 3% of the failure
class.

Table 5.2. Class Distribution of the Training Data
Dataset Class Sample amount Percentage

Training Failure 12,298 3.3%
Normal 360,162 96.7%

Testing Failure 3,270 2.9%
Normal 108,468 97.1%

We applied various resampling techniques to the training dataset to balance the failure class and
the normal class to equal sample size. Therefore, the training dataset contains 360,162 samples
of each class after random oversampling, SMOTE oversampling, and ADASYN oversampling,
while containing only 12,298 samples of each class after random undersampling.

The model performances of each resampling technique used as well as original imbalanced data
are illustrated using ROC curves in Figure 5.1 (below). It shows that the random undersampling
approach has the highest tested AUC value (0.75) among all the test cases. It also reduced model
training time in comparison to the oversampling methods.

Figure 5.1. AUCs of XGBoost Models using Different Resampling Techniques

In addition, we apply Random Forest and traditional fully connected Neural Network algorithms
to the non-resampled dataset and the random undersampled dataset. The results of each model
are displayed in Table 5.3 below. On the Random Forest model and the Neural Network model,

20

random undersampling not only shortens the model training time, but also slightly increases the
AUC value. Further, the XGBoost algorithm produces a better result for both the non-resampled
dataset and the undersampled dataset than Random Forest and Neural Network in our
experiments.

Table 5.3. AUCs of Various Machine Learning Models using Random Undersampled
Dataset and Original Dataset Without Resampling

 XGBoost RF NN
Not

Resampled
Training 0.7498 0.8086 0.7477
Testing 0.7447 0.7391 0.7325

Random
Undersampled

Training 0.7437 0.8423 0.7499
Testing 0.7451 0.7412 0.7365

To visualize the performance of the selected model (XGBoost and random undersampling), we
visualize the relationship between the percentage of signals screened using our machine learning
algorithm (prediction), and the percentage of the total number of rail signal failures that could be
found in those locations (reality).

For example, if we take January 2021 as the predicting month, Figure 5.2(a) shows the failure
percentage curve, which is plotted using the failure probability table shown in Figure 5.2 (b). The
y-axis represents the percentage of actual failures in January 2021 and the x-axis stands for the
percentage of signals among all 18,623 signal units. The points on the plots are calculated by
ranking the signals based on estimated failure probability in descending order, as is displayed in
Figure 5.2 (b). According to the failure percentage curve for January 2021 (shown in Figure 5.2
(a)), screening the top 10% of signals may identify around 35% of signal failures in advance.

Figure 5.2. Failure Percentage Curves (a) and Estimated Probability of Failed Signal Table (b) of

January 2021 Prediction

21

Figure 5.3 (below) shows the ranking of the feature importance in the selected model. The
importance of each feature is calculated by its “weight,” which is the number of times the feature
appears in a tree. As shown in Figure 5.3, the y-axis displays the features used in the model and
the x-axis represents the “weight.” The feature “line,” which was processed using target
encoding, is most useful in the construction of the boosted decision trees within the model. This
may indicate that some location-specific characteristics might affect signal failure occurrence.
The “pmonth_total” variable represents the total number of failures that happened to the signal
within the past 12 months. This may indicate that the locations with large numbers of signal
failures may be likely to experience failures again in the future. The third feature
“lastOccurDays” refers to the number of days between the first day of the predicting month and
the date when the most recent failure occurred. The different actions operated for the past failure
may also influence the probability of signal failure in the future. For example, if the equipment is
replaced, it is supposed to have better durability than the one that is simply repaired or rechecked
in the same conditions. Temperature is also important for predicting signal failures. For example,
in extremely hot weather, failures may occur due to blown fuses and cable faults (Greenham et
al., 2020). In addition, it is interesting to observe that the features produced by target encoding
(i.e., Line, Action Code, Failure Code, Cause Code, Problem Code, Type) are all considered
more important than the features generated by One-Hot Encoding.

Figure 5.3. Feature Importance Plot for the Proposed Model

22

6. Conclusions

This report proposed an event-based data analysis method to generate data that can be better used
in a machine learning model to predict failures of urban rail transit signals. The proposed data
processing approach consists of a combination of One-Hot Encoding, 5-fold Target Encoding, and
window-based feature extraction. We validate the approach using the XGBoost algorithm and
Bayesian Optimization for hyperparameter selection. Four resampling methods: random
oversampling, random undersampling, SMOTE, and ADASYN were also tested and compared to
the model using the original imbalanced dataset. Our proposed method can capture about 35% of
total failures from 10% of screened signal locations. In the future, additional information (e.g.,
equipment age, sensory information) may be incorporated into model improvements.

23

REFERENCES

[1] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification And
Regression Trees. Routledge. https://doi.org/10.1201/9781315139470.

[2] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–
357. https://doi.org/10.1613/jair.953.

[3] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 785–794. https://doi.org/10.1145/2939672.2939785.

[4] Dattagupta, S. J. (2018). A performance comparison of oversampling methods for data
generation in imbalanced learning tasks [PhD Thesis].

[5] Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018).
Learning from Imbalanced Data Sets. Springer International Publishing.
https://doi.org/10.1007/978-3-319-98074-4.

[6] Fitzsimmons, E. G. (2017, May 1). Key to Improving Subway Service in New York? Modern
Signals. The New York Times. https://www.nytimes.com/2017/05/01/nyregion/new-york-
subway-signals.html

[7] Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Icml, 96,
148–156.

[8] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 1189–1232.

[9] Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical
view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics,
28(2), 337–407.

[10] Greenham, S., Ferranti, E., Quinn, A., & Drayson, K. (2020). The impact of high
temperatures and extreme heat to delays on the London Underground rail network: An
empirical study. Meteorological Applications, 27(3), e1910. https://doi.org/10.1002/met.191

[11] Grover, P. (2019, July 8). Getting Deeper into Categorical Encodings for Machine Learning.
https://towardsdatascience.com/getting-deeper-into-categorical-encodings-for-machine-
learning-2312acd347c8

[12] Hasanin, T., & Khoshgoftaar, T. (2018). The effects of random undersampling with
simulated class imbalance for big data. 2018 IEEE International Conference on Information
Reuse and Integration (IRI), 70–79.

[13] He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling
approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), 1322–1328.
https://doi.org/10.1109/IJCNN.2008.4633969

24

[14] Riders Alliance (Accessed in March 2022).
https://static1.squarespace.com/static/61033b9bd377817f5bcc6db9/t/614e54a63c9104704b
083efc/1635951289660/The+Bad%2C+Old+Normal%3A+Subway+Signal+Delays+-
+Riders+Alliance.

[15] Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions.
Progress in Artificial Intelligence, 5(4), 221–232. https://doi.org/10.1007/s13748-016-0094-
0

[16] Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions. Kdd,
98, 73–79.

[17] Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with
imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92–122.
https://doi.org/10.1007/s10618-012-0295-5

[18] Micci-Barreca, D. (2001). A preprocessing scheme for high-cardinality categorical attributes
in classification and prediction problems. ACM SIGKDD Explorations Newsletter, 3(1), 27–
32. https://doi.org/10.1145/507533.507538

[19] O’Madadhain, J., Hutchins, J., & Smyth, P. (2005). Prediction and ranking algorithms for
event-based network data. ACM SIGKDD Explorations Newsletter, 7(2), 23–30.
https://doi.org/10.1145/1117454.1117458

[20] Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of categorical
variable encoding techniques for neural network classifiers. International Journal of
Computer Applications, 175(4), 7–9.

[21] Pourya. (2019, February 5). K-Fold Target Encoding. Medium.
https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

[22] Provost, F. (2000). Machine learning from imbalanced data sets 101. Proceedings of the
AAAI’2000 Workshop on Imbalanced Data Sets, 68(2000), 1–3.

[23] Prusa, J., Khoshgoftaar, T. M., Dittman, D. J., & Napolitano, A. (2015). Using random
undersampling to alleviate class imbalance on tweet sentiment data. 2015 IEEE International
Conference on Information Reuse and Integration, 197–202.

[24] Ren, W., Ma, L., & Wang, Y. (2020). Monte Carlo analysis for safety and reliability of rail
transit signal system based on Cloud Computing. Journal of Physics: Conference Series,
1654, 012065. https://doi.org/10.1088/1742-6596/1654/1/012065

[25] Scikit-learn: Machine learning in Python—Scikit-learn 1.0 documentation. (n.d.). Retrieved
October 20, 2021, from https://scikit-learn.org/stable/index.html

[26] Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science, 240(4857),
1285–1293. https://doi.org/10.1126/science.3287615

[27] Tu, J., Tao, Q., & Deng, Q. (2011). Safety evaluation of urban transit signal system based
on the improved TOPIS. Procedia Engineering, 15, 4558–4562.

https://static1.squarespace.com/static/61033b9bd377817f5bcc6db9/t/614e54a63c9104704b083efc/1635951289660/The+Bad%2C+Old+Normal%3A+Subway+Signal+Delays+-+Riders+Alliance
https://static1.squarespace.com/static/61033b9bd377817f5bcc6db9/t/614e54a63c9104704b083efc/1635951289660/The+Bad%2C+Old+Normal%3A+Subway+Signal+Delays+-+Riders+Alliance
https://static1.squarespace.com/static/61033b9bd377817f5bcc6db9/t/614e54a63c9104704b083efc/1635951289660/The+Bad%2C+Old+Normal%3A+Subway+Signal+Delays+-+Riders+Alliance

25

[28] Wiedmann, W. (2021, July 29). As Railroad Systems Advance, Wayside Signals Fade Away.
Burns Engineering. https://insights.burns-group.com/2021/07/29/as-railroad-systems-
advance-wayside-signals-fade-away/

[29] XGBoost Documentation—Xgboost 1.5.0-dev documentation. (n.d.). Retrieved September
6, 2021, from https://xgboost.readthedocs.io/en/latest/index.html#

[30] Zhang, Y.-P., Xu, Z.-J., & Su, H.-S. (2013). Risk assessment on railway signal system based
on Fuzzy-FMECA method. Sensors & Transducers, 156(9), 203.

	1. Introduction
	2. Literature Review and Knowledge Gaps
	2.1. Literature Review
	2.2 Knowledge Gaps

	3. Data
	4. Methodologies
	4.1. Categorical Data Encoding
	4.2. Feature Extraction
	4.3. Resampling
	4.4. Machine Learning Algorithm

	5. Results
	6. Conclusions
	REFERENCES

Accessibility Report

		Filename:

		cait-utc-reg43-final.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 2

		Passed: 25

		Failed: 3

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

